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Abstract

A real-time hierarchical scheme for predictive control
of nonlinear systems is formulated. Different levels in
the hierarchy operate asynchronously while using data
buffers to intercommunicate. They run at different
sampling rates and have different planning horizons but
use the same underlying algorithm based on finite ele-
ment collocation and Sinc function interpolation. Af-
ter an initial planning phase, the system starts running,
and the system state feedback is utilized by each plan-
ning layer to refine the plan of its predecessor but for a
shorter planning horizon. The results of this approach
is applied to a nonlinear simplified kinematic model of
a mobile robot. The algorithm is implemented using
the NIST RCS Framework for real-time control.

Keywords: Model predictive control, Hierarchical
Control, Sinc Interpolation, Numerical Dynamic Opti-
mization.

1 Introduction

Model Predictive Control (MPC) is a practical on-
line control methodology where the system being con-
trolled operates under constraints and an optimal con-
trol strategy is not available in an analytical form.
MPC has been successfully applied in chemical indus-
try where the system dynamics is typically much slower
than that found in mechanical systems like mobile ro-
bots.
MPC involves solving a finite horizon optimization
problem online at each sampling time instant, using
the current system states as the initial conditions. The
control action so generated is not globally optimum,
nor does it guarantee stability a priori. Some recent
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papers (refer [2] for a survey) have focused on prov-
ing stability using Dynamic Programming and Control
Lyapunov Function approaches.
For application of nonlinear MPC methods to mechani-
cal systems with faster dynamics, the computation time
and effort involved in solving the optimization problem
at each time instant becomes significant. The prob-
lem of finite computation time has not been studied
extensively for nonlinear MPC [4]. Typically, the sam-
pling intervals need to be tuned to obtain a compro-
mise between performance and the computation power
available. Smaller sampling times offer more accurate
predictions but with the same planning horizon, the di-
mension of the optimization problem increases. Larger
sampling intervals, however, fail to ensure satisfaction
of constraints during the prediction horizon and may
not capture fast system dynamics and thus lose perfor-
mance.
This paper formulates the MPC problem into a hierar-
chy of predictive controllers each with its own predic-
tion horizon and sampling rate. This arrangement is
shown to alleviate some of the aforementioned problems
arising out of the finite computational time required to
solve the problem. A simplified nonlinear kinematic
model of a unicycle like mobile robot is used to illus-
trate the strategy.
The paper is organized as follows: section 2 mathemat-
ically formulates the basic MPC problem and discusses
the issue of how to obtain an efficient discretization
of the problem at hand. The choice of a suitable in-
terpolation function set is discussed in subsection 2.2,
and the suitability of Sinc interpolation for predictive
planning is pointed out. Section 3 discusses the idea
behind the proposed scheme of hierarchical controllers
and the basic algorithm applied at each planning layer
is given in subsection 3.1. The software tools used to
implement the algorithm are mentioned in section 4.
Section 6 describes the application of this method to



a real-time simulation of a unicycle like mobile robot
using nonlinear kinematic equations. Finally, conclu-
sions and directions of future work are presented in the
conclusions.

2 Problem Formulation

Let the system be represented by a nonlinear time-
invariant equation:

ẋ = f(x,u), x ∈ �n, u ∈ �m (1)

where x is the state vector and u is the input vector.
Let ti be the current sampling time and let x(ti) be the
current system state. Let ∆T be the sampling period
and let there be N such periods in the planning hori-
zon. Then the end-point of the planning horizon is at
tN = ti + N∆T . The nonlinear programming (NLP)
problem to be solved for the horizon t ∈ [ti, tN ], for the
predictive controller is:

Min

u(t)
JN (u(t),x(ti)) =

∫ tN

ti

L(x,u)dt + F (x(tN )) (2)

subject to:

u(t) ∈ Υ, x(ti) = x0, x(ti + N∆T ) ∈ Xf

where JN is the objective function for the planning
horizon, and is comprised of a terminal cost F and an
integral cost L. Note that this problem is solved for
each sampling instant ti. Some authors distinguish be-
tween a planning horizon P∆T and a control horizon
M∆T , (M ≤ P ), and the planned control is only ap-
plied during the control horizon.

In this paper, the control horizon is defined in terms
of another parameter ∆Tc, which is the average com-
putational time required to solve the NLP problem.
For the system to always have a plan while it is run-
ning, the condition P∆T ≥ ∆Tc should hold. We con-
sider the control horizon M∆T to be the same as ∆Tc,
i.e. the input plan is updated as soon as it is com-
puted. To satisfy the above condition, an initial tuning
phase is normally needed. We further restrict our at-
tention to a two point boundary value problem where,
t0,x(t0), tf ,x(tf ) are given. This problem is relevant
to mobile robots where a set of obstacle-free way-points
might be specified by a higher level planner along with
a total time to traverse the path.

A commonly used method for solving the above
NLP is to use the method of orthogonal collocation
on finite elements [11], where a certain set of system
variables is discretized over the planning horizon. Let
y(t),y ∈ �p be a vector variable being discretized, then
one defines the following terms:

yk|i = y(ti + k∆T ), k ∈ [0, N ] (3)

Y(i, ∆T, N) ≡
[
y0|i . . .yN |i

]
p×(N+1)

T (ti, ∆T, N) ≡ {t : t ∈ [ti, ti + N∆T ]}

If the variable y(t) represents the state or the input,
one can define a n × (N + 1) matrix X(i, ∆T, N) and
a m × (N + 1) matrix U(i, ∆T, N) respectively. One
also defines:

I(t) = [I0(t) . . . IN (t)]T , t ∈ T (ti, ∆T, N) (4)

as the interpolating function used within the planning
horizon. For a given variable y(t),y ∈ �p to be dis-
cretized and interpolated within the planning horizon,
one can write:

y(t) = Y(i, ∆T, N) I(t), t ∈ T (ti, ∆T, N) (5)

2.1 What to Discretize?

2.1.1 General Systems

For a general system given by Eq.(1), one needs to dis-
cretize all states and inputs. The NLP Eq.(2) is then
reduced to:

Min

U(i, ∆T, N)
JN (U(i, ∆T, N),x0|i) =

L[X(i, ∆T, N),U(i, ∆T, N)]
∫ tN

ti

I(t)dt + F (xN |i) (6)

subject to:

uj|i ∈ Υ, j ∈ [0, N ], x0|i = x(ti), xN |i ∈ Xf (7)

X(i, ∆T, N)
dI(t)
dt

= f(X(i, ∆T, N),U(i, ∆T, N)) (8)

t ∈ {tc} ⊂ T (ti, ∆T, N)

where the dynamic equations are applied as nonlin-
ear equality constraints (Eq.8) at time instants given in
the set {tc}, to the problem. The dimesion of the prob-
lem is now (N +1)×n+(N +1)×m. Note also that in
Eq.(8) one has to differentiate the interpolating func-
tion, which in general gives poor approximation near
the boundary points.

2.1.2 Differentially Flat Systems

If the nonlinear system has the property of differential
flatness(this includes feedback linearizable systems [9]
[10]), one can reduce the dimension and complexity of
the NLP considerably. The system 1 is differentially
flat if one can find a set of outputs z, z ∈ �m, such
that all states and inputs can be represented in terms
of z and its derivatives:

x = x(z . . . z(p)), u = u(z . . . z(p)) (9)



Therefore instead of discretizing states and inputs,
one can just discretize the highest derivative of the flat
output z(p) in the planning horizon. Then the follow-
ing recursive strategy could be used to get all other
derivatives of z(t)

z(l) = Zl(ti, ∆T, N) I(t), l ∈ [1, p] (10)

z(l−1)(t) = z(l−1)(ti) + Zl(ti, ∆T, N)
∫ t

ti

I(t)dt (11)

t ∈ T (ti, ∆T, N)

Zl−1(ti, ∆T, N) ≡ [z(l−1)
j|i ]m×(N+1), j ∈ [0, N ] (12)

where Eq.(12) is obtained by sampling Eq.(11). The
initial conditions z(j)(ti), j ∈ [0, p − 1] can be ob-
tained from the corresponding state initial conditions
by substitution in Eq.(9). One then obtains all dis-
cretized states and inputs in terms of the discretized
values of z(p), i.e. X[Zp(ti, ∆T, N)], U[Zp(ti, ∆T, N)].
The above can now be substituted in the NLP problem
(Eq.6) which now has the reduced order of (N +1)×m.
Note that one has the added advantage of only integrat-
ing the interpolating function (which gives good results
in practice) and taking care of the initial conditions
explicitly. Also, the dynamic equations are implicitly
satisfied and therefore need not be applied as nonlinear
equality constraints to the problem.

2.2 Choice of Interpolation I(t)

The most common choice is to use various kinds of
polynomials [11]. Lagrange polynomials with uneven
collocation points were used by ([5]) where the colloca-
tion points are selected as the roots of shifted Legendre
polynomials for accurate integration, i.e.

Ii(t) = LN
i (t) =

N∏
j=0, j �=i

t − tj
ti − tj

(13)

A problem with polynomial interpolation is that as
the number of points increases, the interpolation be-
comes oscillatory between the collocation points. This
causes convergence problems during the solution of the
NLP. It also introduces high frequency (≥ Nyquist fre-
quency 1/2∆T ) components in the ‘signals’ x(t) and
u(t) whose true behaviour cannot be discovered by
‘sampling’(collocating) at an interval of ∆T . The ideal
interpolation formula from signal processing [7] states
that an analog signal x(t) can be recovered from its
samples x(i∆T ) at sampling periods ∆T , if the sig-
nals bandwidth B is such that: 1/∆T ≥ 2B. If the
above condition is satisfied then the ideal interpolation
function is given by a particular form of Sinc(Cardinal)
function:

Ii(t) = Si(t, ∆T ) =
sin(π(t − i∆T )/∆T )

π(t − i∆T )/∆T
(14)

where the Sinc function sinc(x) ≡ sin(πx)/(πx) is de-
fined to be 1, if x = 0. The following properties of the
Sinc interpolation are briefly noted ([6], [8]):

1. limN→∞ LN
i (t) = sinc(t − ti), where LN

i is the
Lagrange polynomial introduced in Eq.(13) and ti
is the i-th sample instant [8]. Similar results can
be obtained for Spline interpolations.

2. For a particular sampling period (collocation inter-
val) ∆T , the Sinc interpolation Si(t, ∆T ) would
make sure that frequencies higher than 1/(2∆T )
are not present in the interpolated variable.

3. In the methodology introduced in section 2.1.2, we
need to compute the integral of Ii(t). If Ii(t) =
Si(t, ∆T ), there exist efficient algorithms for eval-
uating this integral [12].

3 Computational Algorithm

Using Ii(t) = Si(t, ∆T ), as introduced above, one can
apply the idea of hierarchical multi-resolution planning
[1], to setup a hierarchy of predictive controllers. Let
∆T be the fundamental sampling period of the system.
Let Dp(∆T ) denote a set of functions representable by
Si(t, p∆T ), i.e, they are bandlimited by 1/(2p∆T ) Hz.
Clearly, if q ≤ p, then Dp(∆T ) ⊂ Dq(∆T ). Let the
initial desired trajectory be given from x(t0 = 0) to
x(tf ). This is assumed to have been planned by the
highest level planner at level 0. This trajectory may
or may not satisfy the system’s dynamic equations and
other constraints and could be in the form of a suitably
interpolated way points, which traverse an obstacle free
path as in case of a mobile robot. Planner 0 computes
this trajectory offline before the system starts running.
This solution is written to a data- buffer B1. Then
the following algorithm is used for planning levels l =
1 . . . (Nh − 1), where the last level Nh is the system
being controlled.

3.1 Algorithm for Planner at level l

In this section, n1 > n2 > . . . > nNh−1 are chosen
integers. Each predictive level l (l ∈ [1, Nh − 1])does
its planning in H intervals, and its sampling period
(collocation interval) is nl∆T seconds, where ∆T is the
fundamental sampling period of the physical system.
Level l does the following at each executution instant
ti:

1. If ti + nlH∆T > tf stop. The time-to-go is less
than the planning horizon of this level, so it stops.

2. Take the plan in Buffer Bl. Buffer Bl contains a
set of sampled states X(j, nl−1∆T, H) along with



Figure 1: The Predictive Planner at Level L

the sampling period nl−1∆T and the time tj the
plan was generated, of the last plan generated by
Planner level l− 1. Interpolate these stored values
using S(t, nl−1∆T ), to obtain the value of the state
x at t = ti + nlH∆T , i.e till the end of this level’s
horizon. This becomes the goal point of the new
plan that this level is about to generate. Read
the current system state x(ti) from the feedback
buffer.

3. Solve the NLP as described in section 2.1.2.
Use the interpolation function vector S(t, nl∆T ),
for the planning horizon T (ti, nl∆T, H) using
Zp(i, nl∆T, H) as parameters. The solution pro-
vides an input which is ‘optimum’ for the above
horizon with respect to the domain Dnl

(∆T ), as
defined above. For this period, this solution is
better than the solution generated by the previ-
ous level, as Dn(l−1)(∆T ) ⊂ Dnl

(∆T ). Each level
thus, shortens the planning horizon but increases
the frequency resolution.

4. Let this solution be X(j, nl∆T, H). Interpolate
the rest of the solution from Bl in the time-range
[ti + nlH∆T, tf ] using S(t, nl∆T ), and append it
to the solution generated from the current plan-
ning. Write this concatenated full planned solu-
tion ([ti, tf ]) in solution Buffer Bl+1.

When the system at level Nh receives its first plan
from level Nh − 1, it synchronizes its time with the
planned time and starts running. The above identical
algorithm is run by each level at each instant of execu-
tion time. An example structure for the case Nh = 3 is
shown in figure 2.

The following points are to be noted:

1. At any instant, the system has a full plan from t0
to tf , however the solution near the current time
ti has a much finer resolution and therefore a bet-
ter quality. The danger of the computation time
exceeding the planning horizon is somewhat miti-
gated by this.

Figure 2: The hierarchy of the predictive planners

2. The planned state vector x(t) is smooth within a
planner’s horizon. At the boundary of the solu-
tions of two levels the x(t) is C0 continuous. The
planned input u(t) is in general discontinuous at
the level boundaries, as increasing the frequency
resolution might give an optimum which is very
different from the last generated solution. There-
fore each solution buffer contains only the planned
state samples not the inputs. The planned in-
puts can be obtained from back-substitution of the
state-interpolation in the dynamic equation. This
effect can be reduced if the solution of level l − 1
is given as an initial guess to level l. Then the lik-
lihood of a local minimum being found around the
previous solution increases.

3. All levels are running asychronously with respect
to each other. They communicate only via shared
data buffers.

4 Implementation

The above algorithm fits in naturally with the Real-
Time Control System (RCS) Library [13] developed
by NIST. Different levels are designed as seperate
processes running on a Linux machine and communi-
cating through shared-memory data buffers. The NLP
at each level is solved by the SQP algorithm as imple-
mented in NPSOL. A C++ wrapper for NPSOL library
is provided by Sandia National Laboratories [14] which



is used for the purpose.

5 Simulation

The idea presented in this paper is illustrated by a sim-
ulation of a simplified nonlinear kinematic model of a
unicycle like mobile robot. The kinematic equtions for
the system are:

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω (15)

The inputs to this system are u = [v(t), ω(t)], where
v(t) the forward heading speed in meters/sec, and ω(t)
is the rotational speed in rad/sec. The states are x(t) =
[x, y, θ], where x and y are planar coordinates in an
inertial frame and θ is the orientation of the robot with
respect to the x axis. The constraints on the system
are:

−2.5 ≤ v(t) ≤ +2.5, −4.71 ≤ ω(t) ≤ +4.71 (16)

Since the time behaviour is already specified in the
problem, the cost is specified as the minimum input
problem for each level:

Min

u(t)
JN (u(t),x(ti)) =

∫ ti+N∆T

ti

(k1v
2 + k2ω

2)dt (17)

k1 and k2 are scaling factors and are selected as 1.0.
The final state x(ti + N∆T ) for each level is generated
from the solution of the previous level as mentioned in
section 3.1. The set Xf for each level is a hypercube
around this final point which is specified in terms of
the final state error allowable. This allowable error is
bigger in the θ dimension (±π/4) than in the x and
y dimension (0.01 m). The flat ouputs of this system
are [x, y], but we chose to directly discretize the inputs
v, ω, as the cost and constraints and specified direcly
in terms of them. The discretized version of the above
problem can be stated as follows:

Min

V,Ω
JN (x0|i) =

[
V2 + Ω2

]
1×(N+1)

∫ tN

ti

S(t, ∆T )dt (18)

where V2 = V2(i, ∆T, N) and Ω2 = Ω2(i, ∆T, N)
are the samples of the corresponding elementwise
squared values. The gradient and Hessian of the
above cost function with respect to the parameters
[v0, . . . , vN , ω0, . . . ωN ] are required for a fast execution
of the NLP SQP algorithm. These can be directly com-
puted from the above expression.

Three levels of planners, and a robot simulator are
designed:

1. The 0th level planner is given an initial x0 = 0 and
a final point xf = [−5, 2.5, π], and a desired run-
time tf = 10 seconds. This planner runs initially
once and creates a trajectory.

2. Level 1 and 2: These planners run according to the
algorithm in section 3.1.

3. The robot simulator runs at the frequency of 10
Hz. It uses timers to synchronize simulation time
with real-time. It uses a high resolution Euler type
integrator to integrate its state based on the plans
it receives in buffer B3. A small disturbance term
is added to this integrator to test the effectiveness
of MPC.

The results are shown in figures 3- 5.

Figure 3: Simulation: The trajectory planned by the
non-predictive planner 0, and the actual robot trajec-
tory (dotted).

The discrepancy between planned and actual simu-
lated robot teajectory can be attributed to inaccuracies
in Euler integration along with a difficulty in synchro-
nizing the simulation time with real-time exactly.

6 Experiment

An experiment based on the simulation of Sec.5 was
conducted using an IRobot’s Magellan Pro Robot. The
setup of the planner hierarchy is the same as in Sec.5. A
typical run is depicted in Fig.6. The planner 3 (the last
planner) plan which acts as a set point for the robot
at each instant is shown along with the trajectory of
the robot. It shows that MPC is robust with respect
to errors in the initial position of the robot.

7 Conclusion

This paper presents a hierarchical predictive controller
which works despite finite computation times and rela-
tively fast system dynamics. This is achieved by com-
puting a multiresolutional (in time and frequency) over-
all plan for the system, which is always most accurate



Figure 4: Simulation: The trajectory planned by the
predictive planner 1 having a planning horizon of 3.2(=
4 × 0.8) sec at four time instants. The filled color
box represents the starting sample of the robot posi-
tion which was used to plan. Only the first 3.2 sec of
each trajectory has been planned by planner 1. The
rest is the plan of higher level planners interpolated at
planner 1 sampling frequency. The dotted line is the
actual robot trajectory. The trajectories do not end at
tf = 10, if the time-to-go is not an integer multiple of
the sampling period of planner 1. Note that there is
more variance in the final θ state achieved than for x
and y. The dotted curve is the actual robot trajectory.

near the current time. The system is implemented us-
ing the RCS library and its efficacy is tested in a real-
time simulation of a nonlinear kinematic model of a
mobile robot.
Further work is underway in terms of testing the frame-
work in higher dimensional dynamic models and appli-
cation to a real mobile robot environment.
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